A Plasmonic Spanner for Metal Particle Manipulation
نویسندگان
چکیده
Typically, metal particles are difficult to manipulate with conventional optical vortex (OV) tweezers, because of their strong absorption and scattering. However, it has been shown that the vortex field of surface plasmonic polaritons, called plasmonic vortex (PV), is capable of stable trapping and dynamic rotation of metal particles, especially those of mesoscopic and Mie size. To uncover the different physical mechanisms of OV and PV tweezers, we investigated the force distribution and trapping potential of metal particles. In OV tweezers the stronger scattering force causes a positive potential barrier that repels particles, whereas in PV tweezers the dominant gradient force contributes to a negative potential well, resulting in stably trapped particles. Compared with OV, the orbital angular momentum of PV produces an azimuthal scattering force that rotates the trapped particles with more precise radius and position. Our results demonstrate that PV tweezers are superior in manipulation of metal particles.
منابع مشابه
Design and Simulation of a Metal-Insulator-Metal Filter Based on Plasmonic Split Ring
In this paper, a plasmonic filter made of a split ring, two U-shaped structures and two straight waveguides is designed and investigated. In the proposed structure, the split ring and U-shaped structures are situated between straight waveguides. Simulations are done based on FDTD method. Split ring, U-shaped structures and straight waveguides are made of air in the silver background. In the pro...
متن کاملTailoring Plasmonic Enhanced Upconversion in Single NaYF4:Yb3+/Er3+ Nanocrystals
By using silver nanoplatelets with a widely tunable localized surface plasmon resonance (LSPR), and their corresponding local field enhancement, here we show large manipulation of plasmonic enhanced upconversion in NaYF4:Yb(3+)/Er(3+) nanocrystals at the single particle level. In particular, we show that when the plasmonic resonance of silver nanolplatelets is tuned to 656 nm, matching the emis...
متن کاملEnhanced light emission from erbium doped silicon nitride in plasmonic metal-insulator-metal structures.
Plasmonic gratings and nano-particle arrays in a metal-insulator-metal structures are fabricated on an erbium doped silicon nitride layer. This material system enables simple fabrication of the structure, since the active nitride layer can be directly grown on metal. Enhancement of collected emission of up to 12 is observed on resonance, while broad off-resonant enhancement is also present. The...
متن کاملOptical trapping and manipulation of plasmonic nanoparticles: fundamentals, applications, and perspectives.
This feature article discusses the optical trapping and manipulation of plasmonic nanoparticles, an area of current interest with potential applications in nanofabrication, sensing, analytics, biology and medicine. We give an overview over the basic theoretical concepts relating to optical forces, plasmon resonances and plasmonic heating. We discuss fundamental studies of plasmonic particles in...
متن کاملTunable Plasmonic Nanoparticles Based on Prolate Spheroids
Metallic nanoparticles can exhibit very large optical extinction in the visible spectrum due to localized surface plasmon resonance. Spherical plasmonic nanoparticles have been the subject of numerous studies in recent years due to the fact that the scattering response of spheres can be analytically evaluated using Mie theory. However a major disadvantage of metallic spherical nanoparticles is ...
متن کامل